How Bicomponent Technology Works and What it Offers

Jeff Dugan

Fiber Innovation Technology, Inc.

November 8, 2019

Sometimes, one is better than two...

...but generally, two are better than one.

Why?

water

P-4		

How?

88,000 "pepperonis"!

photolithographic etching

•Impossible = possible

•Cheap

•Quick

With bicomponent fibers:

With varying polymer ratios:

PET(1):PET(2) at 50:50 PET(1):PET(2) at 65:35 PET(1):PET(2) at 35:65 PET(1):PET(2) at 80:20 PET(1):PET(2) at 20:80 PET(1):Nylon at 50:50 PET(1):Nylon at 65:35 PET(1):Nylon at 35:65 PET(1):Nylon at 20:80 PET(1):Nylon at 20:80 PET(1):PP at 50:50 PET(1):PP at 65:35 PET(1):PP at 35:65 ...and so on.

Include various fiber shapes and bicomponent arrangements...

a couple of additional examples...

reversible

100% Inotek[™] Knit Fabric

Test method: Gibson, P.W., Elsaiid, A.E., Kendrick, C.E., Rivin, D., Charmchi, M., "A Test Method to Determine the Relative Humidity Dependence of the Air Permeability of Textile Materials," *Journal of Testing and Evaluation* **25** (4), July, 1997. Temperature = 30 °C; Gas Flow Rate 2000 cm³/minute; Sample Diameter = 3.51 cm; Sample Area= 0.0009678 m²

